Direct Light-Driven Water Oxidation by a Ladder-Type Conjugated Polymer Photoanode

نویسندگان

  • Pauline Bornoz
  • Mathieu S. Prévot
  • Xiaoyun Yu
  • Néstor Guijarro
  • Kevin Sivula
چکیده

A conjugated polymer known for high stability (poly[benzimidazobenzophenanthroline], coded as BBL) is examined as a photoanode for direct solar water oxidation. In aqueous electrolyte with a sacrificial hole acceptor (SO3(2-)), photoelectrodes show a morphology-dependent performance. Films prepared by a dispersion-spray method with a nanostructured surface (feature size of ∼20 nm) gave photocurrents up to 0.23 ± 0.02 mA cm(-2) at 1.23 VRHE under standard simulated solar illumination. Electrochemical impedance spectroscopy reveals a constant flat-band potential over a wide pH range at +0.31 VNHE. The solar water oxidation photocurrent with bare BBL electrodes is found to increase with increasing pH, and no evidence of semiconductor oxidation was observed over a 30 min testing time. Characterization of the photo-oxidation reaction suggests H2O2 or •OH production with the bare film, while functionalization of the interface with 1 nm of TiO2 followed by a nickel-cobalt catalyst gave solar photocurrents of 20-30 μA cm(-2), corresponding with O2 evolution. Limitations to photocurrent production are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible Light Driven Photoelectrochemical Water Splitting on Metal Free Nanoporous Carbon Promoted by Chromophoric Functional Groups

A nanoporous carbon was prepared from sulfonic acid based water soluble polymer. Its direct one step carbonization followed by air oxidation led to a porous material whose surface was rich in N-, Oand Scontaining groups. TEM images showed the presence of 10 nm graphitic domains in the carbon matrix. When the carbon was used as a photoanode under visible light irradiation, oxygen evolution occur...

متن کامل

Polymer-based chromophore–catalyst assemblies for solar energy conversion

The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochem...

متن کامل

Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.

A self-biasing photoelectrochemical (PEC) cell that could work for spontaneous overall water splitting in a neutral solution was established based on the mismatched Fermi levels between the photoelectrodes. A Pt-catalyst-decorated crystalline silicon photovoltaic cell (Pt/PVC) was prepared and employed as an effective photocathode. This was coupled with a poly(ethylene glycol)-directed WO3/W ph...

متن کامل

Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with photosystem II.

This discussion describes a direct comparison of photoelectrochemical (PEC) water oxidation activity between a photosystem II (PSII)-functionalised photoanode and a synthetic nanocomposite photoanode. The semi-biological photoanode is composed of PSII from the thermophilic cyanobacterium Thermosynechococcus elongatus on a mesoporous indium tin oxide electrode (mesoITO|PSII). PSII embeds all of ...

متن کامل

Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode.

Dye-sensitized photoelectrosynthesis cells (DSPECs) provide a flexible approach for solar water splitting based on the integration of molecular light absorption and catalysis on oxide electrodes. Recent advances in this area, including the use of core/shell oxide interfacial structures and surface stabilization by atomic layer deposition, have led to improved charge-separation lifetimes and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015